Regulation of total and myofibrillar protein breakdown in rat extensor digitorum longus and soleus muscle incubated flaccid or at resting length.
نویسندگان
چکیده
The present study characterized total and myofibrillar protein breakdown rates in a muscle preparation frequently used in vitro, i.e. incubated extensor digitorum longus (EDL) and soleus (SOL) muscles of young rats. Total and myofibrillar protein breakdown rates were assessed by determining net production by the incubated muscles of tyrosine and 3-methylhistidine (3-MH) respectively. Both amino acids were determined by h.p.l.c. Both total and myofibrillar protein breakdown rates were higher in SOL than in EDL muscles and were decreased by incubating the muscles maintained at resting length, rather than flaccid. After fasting for 72 h, total protein breakdown (i.e. tyrosine release) was increased by 73% and 138% in EDL muscles incubated flaccid and at resting length respectively. Net production of tyrosine by SOL muscle was not significantly altered by fasting. In contrast, myofibrillar protein degradation (i.e. 3-MH release) was markedly increased by fasting in both muscles. When tissue was incubated in the presence of 1 munit of insulin/ml, total protein breakdown rate was inhibited by 17-20%, and the response to the hormone was similar in muscles incubated flaccid or at resting length. In contrast, myofibrillar protein breakdown rate was not altered by insulin in any of the muscle preparations. The results support the concepts of individual regulation of myofibrillar and non-myofibrillar proteins and of different effects of various conditions on protein breakdown in different types of skeletal muscle. Thus determination of both tyrosine and 3-MH production in red and white muscle is important for a more complete understanding of protein regulation in skeletal muscle.
منابع مشابه
Chick skeletal muscle proteolysis in vitro increased by corticosterone.
Six-day-old chick skeletal muscle (extensor digitorum longus) was incubated in the presence of corticosterone (CTC; 0, 3, 30, and 300 ng/ml) for 2 h at 37 degrees C. Tyrosine and N (tau)-methylhistidine releases, as indices of total muscle and myofibrillar proteolysis, were increased by CTC but with different dose responses, indicating an independent regulation of myofibrillar and non-myofibril...
متن کاملRegulation of protein metabolism by a physiological concentration of insulin in mouse soleus and extensor digitorum longus muscles. Effects of starvation and scald injury.
1. Although high concentrations of insulin affect both synthesis and degradation of skeletal-muscle protein, it is not known to what extent these effects occur with physiological concentrations. The effects of a physiological concentration of insulin (100 mu units/ml) on muscle protein synthesis, measured with [3H]tyrosine, and on muscle protein degradation, measured by tyrosine release in the ...
متن کاملThe effects of calcium on protein turnover in skeletal muscles of the rat.
Several experimental procedures were used to increase the intracellular concentration of Ca2+ and determine its effects on protein turnover in isolated extensor digitorum longus and soleus muscle. These methods included the use of ionophore A23187, caffeine, dibucaine, thymol and procaine, all agents known to induce the release of calcium by acting either on the sarcolemma and/or on the sarcopl...
متن کاملSepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle.
We tested the role of different intracellular proteolytic pathways in sepsis-induced muscle proteolysis. Sepsis was induced in rats by cecal ligation and puncture; controls were sham operated. Total and myofibrillar proteolysis was determined in incubated extensor digitorum longus muscles as release of tyrosine and 3-methylhistidine, respectively. Lysosomal proteolysis was assessed by using the...
متن کاملEnergy-ubiquitin-dependent muscle proteolysis during sepsis in rats is regulated by glucocorticoids.
Recent studies suggest that sepsis-induced increase in muscle proteolysis mainly reflects energy-ubiquitin-dependent protein breakdown. We tested the hypothesis that glucocorticoids activate the energy-ubiquitin-dependent proteolytic pathway in skeletal muscle during sepsis. Rats underwent induction of sepsis by cecal ligation and puncture or were sham-operated and muscle protein breakdown rate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 267 1 شماره
صفحات -
تاریخ انتشار 1990